On the Ramsey–Turán number with small s-independence number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Ramsey-Turán number with small s-independence number

Let s be an integer, f = f(n) a function, and H a graph. Define the Ramsey-Turán number RTs(n,H, f) as the maximum number of edges in an H-free graph G of order n with αs(G) < f , where αs(G) is the maximum number of vertices in a Ks-free induced subgraph of G. The Ramsey-Turán number attracted a considerable amount of attention and has been mainly studied for f not too much smaller than n. In ...

متن کامل

Graphs with Small Independence Number Minimizing the spectral radius

The independence number of a graph is defined as the maximum size of a set of pairwise non-adjacent vertices and the spectral radius is defined as the maximum eigenvalue of the adjacency matrix of the graph. Xu et al. in [The minimum spectral radius of graphs with a given independence number, Linear Algebra and its Applications 431 (2009) 937–945] determined the connected graphs of order n with...

متن کامل

On the chromatic number and independence number of hypergraph products

The hypergraph product G2H has vertex set V (G) × V (H), and edge set {e × f : e ∈ E(G), f ∈ E(H)}, where × denotes the usual cartesian product of sets. We construct a hypergraph sequence {Gn} for with χ(Gn) → ∞ and χ(Gn2Gn) = 2 for all n. This disproves a conjecture of Berge and Simonovits [2]. On the other hand, we show that if G and H are hypergraphs with infinite chromatic number, then the ...

متن کامل

Triangle-free planar graphs with small independence number

Since planar triangle-free graphs are 3-colourable, such a graph with n vertices has an independent set of size at least n/3. We prove that unless the graph contains a certain obstruction, its independence number is at least n/(3−ε) for some fixed ε > 0. We also provide a reduction rule for this obstruction, which enables us to transform any plane triangle-free graph G into a plane triangle-fre...

متن کامل

Interpolating between bounds on the independence number

For a non-negative integer T , we prove that the independence number of a graph G = (V,E) in which every vertex belongs to at most T triangles is at least ∑ u∈V f(d(u), T ) where d(u) denotes the degree of a vertex u ∈ V , f(d, T ) = 1 d+1 for T ≥ ( d 2 ) and f(d, T ) = (1 + (d2− d− 2T )f(d− 1, T ))/(d2 + 1− 2T ) for T < ( d 2 ) . This is a common generalization of the lower bounds for the inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2017

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2016.09.002